欢迎登录材料期刊网

材料期刊网

高级检索

  • 论文(2)
  • 图书()
  • 专利()
  • 新闻()

钢质贮罐底板外侧阴极保护时的电位分布

邱枫 , 徐乃欣

中国腐蚀与防护学报

钢质贮罐底板外侧阴极保护时的电位分布往往不均匀。本文用有限元法计算了几种情况下的电位分布和电流分布规律,并在此基础上讨论了多种因素对电位分布的影响,包括土壤的电阻率、贮罐底板外侧表面状态、阳极的数量和分布以及极化量等。这些结果可以解释罐底阴极保护的特征。这个计算方法可用于贮罐底板外侧阴极保护系统的设计。

关键词: 钢质贮罐 , Cathodic protection , Potential distribution , Finite element method

Parametric Analysis of Tensile Properties of Bimodal Al Alloys by Finite Element Method

W.L. Zhang

材料科学技术(英)

An axisymmetrical unit cell model was used to represent a bimodal Al alloy that was composed of both nano-grained (NG) and coarse-grained (CG) aluminum. Effects of microstructural and materials parameters on tensile properties of bimodal Al alloy were investigated by finite element method (FEM). The parameters analyzed included aspect ratios of CG Al and the unit cell, volume fraction of CG Al (VFCG), and yield strength and strain hardening exponent of CG Al. Aspect ratios of CG Al and the unit cell have no significant influence on tensile stress-strain response of the bimodal Al alloy. This phenomenon derives from the similarity in elastic modulus and coefficient of thermal expansion between CG Al and NG Al. Conversely, tensile properties of bimodal Al alloy are extremely sensitive to VFCG, yield strength and strain hardening exponent of CG Al. Specifically, as VFCG increases, both yield strength and ultimate tensile strength (UTS) of the bimodal Al alloy decreases, while uniform strain of bimodal Al alloy increases. In addition, an increase in yield strength of CG Al results in an increase in both yield stress and UTS of bimodal Al alloy and a decrease in uniform strain of bimodal Al alloy. The lower capability in lowering the increase of stress concentration in NG Al due to a higher yield strength of CG Al causes the lower uniform strain of the bimodal Al alloy. When strain hardening exponent of CG Al increases, 0.2% yield stress, UTS, and uniform strain of the bimodal Al alloy increases. This can be attributed to the increased work-hardening ability of CG Al with a higher strain hardening exponent.

关键词: Nanomaterials , null , null , null , null

出版年份

刊物分类

相关作者

相关热词